Phys 402 Fall 2022 Homework 11 Due Wednesday, 7 December @ 10 AM

FINAL EXAM will be on Tuesday 20 December (8:00 to 10:00 AM) in Toll/Physics 1402, covering everything

1. Griffiths, 3 rd Edition, Problem 5.20	[Average energy of electrons in a free- electron Fermi gas]
2. Griffiths, 3 rd Edition, Problem 5.21	[Fermi gas properties of Copper]
3. Griffiths, 3 rd Edition, Problem 5.23	[Bulk modulus of a free-electron Fermi gas]
4. Griffiths, 3 rd Edition, Problem 5.30.	[Fermi energy for 2D electrons]
5. Griffiths, 3 rd Edition, Problem 5.32.	[Electron gas with spin]
6. Griffiths, 3 rd Edition, Problem 5.33.	[Pauli paramagnetism]

Extra Credit

11. Bose-Einstein Condensation

(a) Show that for bosons the chemical potential must always be less than the minimum allowed energy, which we take to be 0. *Hint*: the number of bose particles with energy *E* is $n(E) = \frac{1}{e^{(E-\mu)/k_BT}-1}$, and cannot be negative.

(b) In particular, for the ideal bose gas, $\mu(T) < 0$ for all *T*. Show that in this case $\mu(T)$ monotonically increases as *T* decreases, assuming the total number of particles *N* and the volume *V* are held constant. *Hint*: Study this expression for the total number of particles: $N = \frac{V}{2\pi^2} \int_0^\infty \frac{k^2 dk}{e^{[(\hbar^2 k^2/2m) - \mu]/k_BT} - 1}.$

(c) A crisis (called Bose condensation) occurs when (as we lower T) $\mu(T)$ hits zero. Evaluate the integral, for $\mu = 0$, and obtain the formula for the critical temperature T_c at which this happens. Below the critical temperature, the particles crowd into the ground state, and the calculational device of replacing the discrete sum ($N = \sum_{n=1}^{\infty} N_n$, where N_n is the number of occupied states in energy level E_n) by a continuous integral (the expression for N given in (b)) loses its validity. Hint:

$$\int_0^\infty \frac{x^{s-1}}{e^{x-1}} \, dx = \Gamma(s) \, \zeta(s),$$

where Γ is Euler's gamma function, and ζ is the Reimann zeta function.

(d) Find the critical temperature for ⁴He. Its density, at this temperature, is 0.15 gm/cm^3 . *Comment*: The experimental value of the critical temperature in ⁴He is 2.17 K.